Ciência Unesc

Brain Research - NMDA preconditioning prevents object recognition memory impairment and increases brain viability in mice exposed to traumatic brain injury


Vania Katia Moojen, Marcela Damiane Neves, Daniele Bavaresco, Bruna Bardini Pescador, Clarissa Comim, João Quevedo, Carina Boeck.

Recent studies have focused on the role of N-methyl-d-aspartate (NMDA) in brain injury. The present study is aimed at verifying memory, anxiety/depression parameters, and cellular viability in the brain of mice preconditioned with NMDA and subjected to the model of mild traumatic brain injury. For this purpose, male albino CF-1 mice were pre-treated with NMDA (75 mg/kg) and subjected to brain trauma, and after 24h submitted to memory tasks and anxiety and depression-like behavioral tests. The memory tests were evaluated at 1.5h, 24h, and 7 days after the training. In addition, the cellular viability was evaluated in the cerebral cortex and hippocampus 96 h after the trauma. It was observed that the cellular viability was reduced in the hippocampus of the mice subjected to trauma and the preconditioning with NMDA was able to protect this damage. All mice learnt the task in the habituation test, but in the object recognition task the mice preconditioned with NMDA were protected against impairment induced by TBI in both short and long-term memory. On the other hand, in the step-down inhibitory avoidance test, only the mice treated with NMDA showed impairment of long-term memory (7 days after training session). The evaluation of anxiety/depression behavior showed no changes after TBI. In conclusion, NMDA preconditioning induced impairment of the long-term memory; however, it was able to protect against the novel recognition memory impairment and increase the cellular survival in the hippocampus of mice exposed to traumatic brain injury.

Link

 

14 de dezembro de 2012 às 17:40
Compartilhar Comente

Neuroscience Letters - Effects of experimental cerebral malaria in memory, brain-derived neurotrophic factor and acetylcholinesterase activity [correction for acitivity] in the hippocampus of survivor mice



Clarissa M. Comim, Patricia A. Reis, Valber S. Frutuoso, Gabriel Rodrigo Fries, Daiane Fraga, Flávio Kapczinski, Alexandra I. Zugno, Tatiana Barichello, João Quevedo e Hugo C. Castro-Faria-Neto

Malaria is the most important human parasitic disease and cerebral malaria (CM), its main neurological complication, is characterized by neurological and cognitive damage in both human and animal survivors. The brain-derived neurotrophic factor (BDNF) appears to be involved with activity-dependent synaptic plasticity. There is great interest regarding its role in learning and memory as well as acetylcholinesterase activity (AChE) that is implicated in many cognitive functions and probably plays important roles in neurodegenerative disorders. In the present work, we evaluated BDNF protein levels and AChE activity in the hippocampus and habituation in an animal model of CM using C57BL/6 mice after fifteen days of the induction. The results demonstrated that there was a decrease in BDNF levels in the hippocampus of C57BL/6 mice infected with PbA when compared with C57BL/6 non-infected mice and C57BL/6 non-infected mice that received treatment with chloroquine. However, no difference was observed in AChE activity in the hippocampus. When habituation was evaluated there was memory impairment in the C57BL/6 mice infected with Plasmodium berghei ANKA (PbA). In conclusion, we believe that the decreased BDNF levels in the hippocampus may be related with memory impairment without alterations on AChE activity.

Link


 

12 de dezembro de 2012 às 11:59
Compartilhar Comente

Journal of Inherited Metabolic Disease - Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model


Giselli Scaini, Clarissa Comim, Giovanna Medeiros de Oliveira, Mateus Augusto Pasquali, João Quevedo, Daniel Pens Gelain, José Claudio Moreira, Patrícia Fernanda Schuck, Gabriela Ferreira, Mauricio Reis Bogo e Emilio Streck

Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.

Link

 

12 de dezembro de 2012 às 11:54
Compartilhar Comente

European journal of Pharmacology - Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis



Tatiana Barichello, Renan Ceretta, Jaqueline Generoso, Ana Paula Moreira, Lutiana R. Simões, Clarissa Comim, João Quevedo, Márcia Carvalho Vilela, Antônio Zuardi, José Crippa e Antonio Lucio Teixeira

Pneumococcal meningitis is a life-threatening disease characterized by an acute infection affecting the pia matter, arachnoid and subarachnoid space. The intense inflammatory response is associated with a significant mortality rate and neurologic sequelae, such as, seizures, sensory-motor deficits and impairment of learning and memory. The aim of this study was to evaluate the effects of acute and extended administration of cannabidiol on pro-inflammatory cytokines and behavioral parameters in adult Wistar rats submitted to pneumococcal meningitis. Male Wistar rats underwent a cisterna magna tap and received either 10μl of sterile saline as a placebo or an equivalent volume of S. pneumoniae suspension. Rats subjected to meningitis were treated by intraperitoneal injection with cannabidiol (2.5, 5, or 10mg/kg once or daily for 9 days after meningitis induction) or a placebo. Six hours after meningitis induction, the rats that received one dose were killed and the hippocampus and frontal cortex were obtained to assess cytokines/chemokine and brain-derived neurotrophic factor levels. On the 10th day, the rats were submitted to the inhibitory avoidance task. After the task, the animals were killed and samples from the hippocampus and frontal cortex were obtained. The extended administration of cannabidiol at different doses reduced the TNF-α level in frontal cortex. Prolonged treatment with canabidiol, 10mg/kg, prevented memory impairment in rats with pneumococcal meningitis. Although descriptive, our results demonstrate that cannabidiol has anti-inflammatory effects in pneumococcal meningitis and prevents cognitive sequel.

Link


 

31 de outubro de 2012 às 11:55
Compartilhar Comente

Journal of Psychopharmacology - Lithium and tamoxifen modulate cellular plasticity cascades in animal model of mania


Kelen Cechinel Recco, Samira Valvassori, Roger Varela, Wilson Rodrigues Resende, Camila Arent, Marcelo Vitto, Gabrielle da Luz, Claúdio de Souza e João Quevedo

Lithium (Li) is the main mood stabilizer and acts on multiple biochemical targets, leading to neuronal plasticity. Several clinical studies have shown that tamoxifen (TMX) - a protein kinase C (PKC) inhibitor - has been effective in treating acute mania. The present study aims to evaluate the effects of TMX on biochemical targets of Li, such as glycogen synthase kinase-3β (GSK-3β), PKC, PKA, CREB, BDNF and NGF, in the brain of rats subjected to an animal model of mania induced by d-amphetamine (d-AMPH). Wistar rats were treated with d-AMPH (2mg/kg, once a day) or saline (Sal; NaCl 0.9%, w/v), Li (47.5 mg/kg, intraperitoneally (i.p.), twice a day) or TMX (1 mg/kg i.p., twice a day) or Sal in protocols of reversion and prevention treatment. Locomotor behavior was assessed using the open-field task, and protein levels were measured by immunoblot. Li and TMX reversed and prevented d-AMPH-induced hyperactivity. Western blot showed that d-AMPH significantly increased GSK-3 and PKC levels, and decreased pGSK-3, PKA, NGF, BDNF and CREB levels in the structures analyzed. Li and TMX were able to prevent and reverse these changes induced by d-AMPH in most structures evaluated. The present study demonstrated that the PKC inhibitor modulates the alterations in the behavior, neurotrophic and apoptosis pathway induced by d-AMPH, reinforcing the need for more studies of PKC as a possible target for treatment of bipolar disorder.

Link


 

31 de outubro de 2012 às 11:54
Compartilhar Comente